Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization

نویسندگان

  • E. Kokiopoulou
  • C. Bekas
  • E. Gallopoulos
چکیده

A matrix-free algorithm, IRLANB, for the efficient computation of the smallest singular triplets of large and possibly sparse matrices is described. Key characteristics of the approach are its use of Lanczos bidiagonalization, implicit restarting, and harmonic Ritz values. The algorithm also uses a deflation strategy that can be applied directly on Lanczos bidiagonalization. A refinement postprocessing phase is applied to the converged singular vectors. The computational costs of the above techniques are kept small as they make direct use of the bidiagonal form obtained in the course of the Lanczos factorization. Several numerical experiments with the method are presented that illustrate its effectiveness and indicate that it performs well compared to existing codes.  2003 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices

The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermo...

متن کامل

A harmonic Lanczos bidiagonalization method for computing interior singular triplets of large matrices

This paper proposes a harmonic Lanczos bidiagonalization method for computing some interior singular triplets of large matrices. It is shown that the approximate singular triplets are convergent if a certain Rayleigh quotient matrix is uniformly bounded and the approximate singular values are well separated. Combining with the implicit restarting technique, we develop an implicitly restarted ha...

متن کامل

Augmented Implicitly Restarted Lanczos Bidiagonalization Methods

New restarted Lanczos bidiagonalization methods for the computation of a few of the largest or smallest singular values of a large matrix are presented. Restarting is carried out by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonalization method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors. Computed examples show the ne...

متن کامل

An Implicitly Restarted Lanczos Bidiagonalization Method for Computing Smallest Singular Triplets

We describe the development of a method for the efficient computation of the smallest singular values and corresponding vectors for large sparse matrices [4]. The method combines state-of-the-art techniques that make it a useful computational tool appropriate for large scale computations. The method relies upon Lanczos bidiagonalization (LBD) with partial reorthogonalization [6], enhanced with ...

متن کامل

An Implicitly Restarted Block Lanczos Bidiagonalization Method Using Leja Shifts

In this paper, we propose an implicitly restarted block Lanczos bidiagonalization (IRBLB) method for computing a few extreme or interior singular values and associated right and left singular vectors of a large matrix A. Our method combines the advantages of a block routine, implicit shifting, and the application of Leja points as shifts in the accelerating polynomial. The method neither requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004